Moderate band-gap-broadening induced high separation of electron-hole pairs in Br substituted BiOI: a combined experimental and theoretical investigation.

نویسندگان

  • Hongwei Huang
  • Xiaowei Li
  • Xu Han
  • Na Tian
  • Yihe Zhang
  • Tierui Zhang
چکیده

We, for the first time, demonstrate band-gap-broadening as a new approach to remarkably enhance the photocatalytic activity of Br(-) substituted BiOI photocatalysts, which were fabricated via a facile chemical precipitation route. The successful incorporation of Br(-) ions into the crystal lattice of BiOI was confirmed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM). The photocatalytic experiments demonstrated that all of the Br-BiOI samples exhibited highly improved photocatalytic performances pertaining to rhodamine B (RhB) and phenol degradation under visible light (λ > 420 nm). The active species trapping and electron spin resonance (ESR) experiments also suggested that more superoxide radicals (˙O2(-)), serving as the main active species, were generated over Br-BiOI than pristine BiOI in the photooxidation process. Based on the results from experiments and theoretical calculations, the enhancement of photocatalytic activity should be attributed to the lowered valence band (VB) potential and enlarged band gap induced by the Br(-) replacement, which greatly facilitated the high separation of photoinduced electron-hole pairs, as verified by the photoluminescence (PL) experiments, electrochemical impedance spectra (EIS) and Bode-phase spectra. This work sheds light on a new method to improve the photocatalytic performance of photocatalysts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial separation of photo-generated electron-hole pairs in BiOBr/BiOI bilayer to facilitate water splitting

The electronic structures and photocatalytic properties of bismuth oxyhalide bilayers (BiOX1/BiOX2, X1 and X2 are Cl, Br, I) are studied by density functional theory. Briefly, their compositionally tunable bandgaps range from 1.85 to 3.41 eV, suitable for sun-light absorption, and all bilayers have band-alignments good for photocatalytic water-splitting. Among them, heterogeneous BiOBr/BiOI bil...

متن کامل

Investigation of the Effect of Band Offset and Mobility of Organic/Inorganic HTM Layers on the Performance of Perovskite Solar Cells

Abstract: Perovskite solar cells have become an attractive subject in the solar energydevice area. During ten years of development, the energy conversion efficiency has beenimproved from 2.2% to more than 22%, and it still has a very good potential for furtherenhancement. In this paper, a numerical model of the perovskite solar cell with thestructure of glass/ FTO/ TiO2/...

متن کامل

Efficient visible light-induced degradation of rhodamine B by W(NxS1−x)2 nanoflowers

Here, W(NxS1-x)2 nanoflowers were fabricated by simple sintering process. Photocatalytic activity results indicated our fabricated N-doped WS2 nanoflowers shown outstanding photoactivity of degradating of rhodamine B with visible light. Which is attributed to the high separation efficiency of photoinduced electron-hole pairs, the broadening of the valence band (VB), and the narrowing of energy ...

متن کامل

Line shape analysis of electron–hole plasma electroluminescence in fully strained SiGe epitaxial layers

The electroluminescence of p-i-n diodes with fully strained Si0.80Ge0.20 /Si(001) is dominated by radiative recombination in an electron–hole plasma. The recombination mechanisms and the band gap renormalization have been studied experimentally and by modeling. In order to minimize the influence of the SiGe/Si interface regions and thus to study the intrinsic behavior of strained SiGe, electrol...

متن کامل

Halogenated Graphdiyne and Graphyne Single Layers: A Systematic Study

Graphyne and graphdiyne families of flat carbon (sp2/sp) networks with high degrees of π-conjunction are attracting much attention due to their promising electronic, optical, and mechanical properties. In the present investigation we have studied the structural, mechanical, electrical and optical properties of halogenated graphdiyne and graphyne. The optical spectra of pure and halog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 5  شماره 

صفحات  -

تاریخ انتشار 2015